Simultaneous Ion Swarm Profiling and Ion Mobility Measurement using Ion Cameras.
Cullen GreerBrian H ClowersPublished in: Journal of the American Society for Mass Spectrometry (2023)
When operated as a standalone analytical device, traditional drift tube ion mobility spectrometry (IMS) experiments require high-speed, high-gain transimpedance amplifiers to record ion separations with sufficient resolution. Recent developments in the fabrication of charge-sensitive cameras (e.g., IonCCD) have provided key insights for ion beam profiling in mass spectrometry and even served as detectors for miniature magnetic sector instruments. Unfortunately, these platforms have comparatively slow integration times (multiple ms), which largely precludes their use for recording ion mobility spectra, where sampling rates into the 10s of kHz are generally required. As a result, experiments that simultaneously probe the longitudinal and transverse mobility of an injected species using an array detector have not been reported. To address this duty-cycle mismatch, a frequency encoding strategy is used to evaluate ion swarm characteristics, while directly capturing ion mobility information using the Fourier transform. This apparatus described allows the ion beam to be profiled over the full course of the experiment and establishes the foundation to examine axial and longitudinal drift velocities simultaneously.