Login / Signup

Risk-Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach.

Udoamaka EzuruikeHelen HumphriesMaurice DickinsSibylle NeuhoffIain GardnerKaren Rowland Yeo
Published in: Clinical pharmacology and therapeutics (2018)
Current formulations of combined oral contraceptives (COC) containing ethinylestradiol (EE) have ≤35 μg due to increased risks of cardiovascular diseases (CVD) with higher doses of EE. Low-dose formulations however, have resulted in increased incidences of breakthrough bleeding and contraceptive failure, particularly when coadministered with inducers of cytochrome P450 enzymes (CYP). The developed physiologically based pharmacokinetic model quantitatively predicted the effect of CYP3A4 inhibition and induction on the pharmacokinetics of EE. The predicted Cmax and AUC ratios when coadministered with voriconazole, fluconazole, rifampicin, and carbamazepine were within 1.25 of the observed data. Based on published clinical data, an AUCss value of 1,000 pg/ml.h was selected as the threshold for breakthrough bleeding. Prospective application of the model in simulations of different doses of EE (20 μg, 35 μg, and 50 μg) identified percentages of the population at risk of breakthrough bleeding alone and with varying degrees of CYP modulation.
Keyphrases