Login / Signup

Fourier Transform Infrared Microspectroscopy Combined with Principal Component Analysis and Artificial Neural Networks for the Study of the Effect of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation on Articular Cartilage.

Izabela ŚwietlickaSiemowit MuszyńskiCarina PreinHauke Clausen-SchaumannAttila AszódiMarcin Bartłomiej ArciszewskiTomasz BlicharskiMariusz GagośMichał ŚwietlickiPiotr DobrowolskiKatarzyna KrasEwa TomaszewskaMarta Arczewska
Published in: International journal of molecular sciences (2021)
The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young's modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.
Keyphrases
  • neural network
  • high resolution
  • randomized controlled trial
  • machine learning
  • deep learning
  • atomic force microscopy
  • data analysis
  • risk assessment
  • fluorescence imaging
  • high speed
  • human health