Login / Signup

Nonequilibrium thermodynamics of non-ideal chemical reaction networks.

Francesco AvanziniEmanuele PenocchioGianmaria FalascoMassimiliano Esposito
Published in: The Journal of chemical physics (2021)
All current formulations of nonequilibrium thermodynamics of open chemical reaction networks rely on the assumption of non-interacting species. We develop a general theory that accounts for interactions between chemical species within a mean-field approach using activity coefficients. Thermodynamic consistency requires that rate equations do not obey standard mass-action kinetics but account for the interactions with concentration dependent kinetic constants. Many features of the ideal formulations are recovered. Crucially, the thermodynamic potential and the forces driving non-ideal chemical systems out of equilibrium are identified. Our theory is general and holds for any mean-field expression of the interactions leading to lower bounded free energies.
Keyphrases
  • poor prognosis
  • aqueous solution
  • molecular dynamics simulations
  • molecular dynamics
  • genetic diversity
  • human health