The Inhibition of Autophagy and Pyroptosis by an Ethanol Extract of Nelumbo nucifera Leaf Contributes to the Amelioration of Dexamethasone-Induced Muscle Atrophy.
Eunji ParkHo-Jung ChoiCao-Sang TruongYoon Sin OhPublished in: Nutrients (2023)
Muscle atrophy is characterized by a decline in muscle mass and function. Excessive glucocorticoids in the body due to aging or drug treatment can promote muscle wasting. In this study, we investigated the preventive effect of Nelumbo nucifera leaf (NNL) ethanolic extract on muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, in mice and its underlying mechanisms. The administration of NNL extract increased weight, cross-sectional area, and grip strength of quadriceps (QD) and gastrocnemius (GA) muscles in DEX-induced muscle atrophy in mice. The NNL extract administration decreased the expression of muscle atrophic factors, such as muscle RING-finger protein-1 and atrogin-1, and autophagy factors, such as Beclin-1, microtubule-associated protein 1A/1B-light chain 3 (LC3-I/II), and sequestosome 1 (p62/SQSTM1) in DEX-injected mice. DEX injection increased the protein expression levels of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), cleaved-caspase-1, interleukin-1beta (IL-1β), and cleaved-gasdermin D (GSDMD), which were significantly reduced by NNL extract administration (500 mg/kg/day). In vitro studies using C2C12 myotubes also revealed that NNL extract treatment inhibited the DEX-induced increase in autophagy factors, pyroptosis-related factors, and NF-κB. Overall, the NNL extract prevented DEX-induced muscle atrophy by downregulating the ubiquitin-proteasome system, autophagy pathway, and GSDMD-mediated pyroptosis pathway, which are involved in muscle degradation.
Keyphrases
- oxidative stress
- skeletal muscle
- diabetic rats
- cell death
- signaling pathway
- endoplasmic reticulum stress
- high glucose
- anti inflammatory
- drug induced
- low dose
- poor prognosis
- nlrp inflammasome
- immune response
- insulin resistance
- induced apoptosis
- physical activity
- metabolic syndrome
- cell proliferation
- high resolution
- pet ct
- amino acid
- long non coding rna
- weight gain
- lps induced
- protein protein
- toll like receptor
- single cell
- pi k akt