A tailor-made, self-sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase.
Donya ValikhaniJuan M BolivarAlexander DennigBernd NidetzkyPublished in: Biotechnology and bioengineering (2018)
Cytochrome P450 monooxygenases (P450s) promote hydroxylations in a broad variety of substrates. Their prowess in C-H bond functionalization renders P450s promising catalysts for organic synthesis. However, operating P450 reactions involve complex management of the main substrates, O2 and nicotinamide adenine dinucleotide phosphate (NAD(P)H) reducing equivalents against an overall background of low operational stability. Whole-cell biocatalysis, although often used, offers no general solution to these problems. Herein, we present the design of a tailor-made, self-sufficient, operationally stabilized and recyclable P450 catalyst on porous solid support. Using enzymes as fusion proteins with the polycationic binding module Zbasic2 , the P450s BM3 (from Bacillus megaterium) was coimmobilized with glucose dehydrogenase (type IV; from B. megaterium) on anionic sulfopropyl-activated carrier (ReliSorb SP). Immobilization via Zbasic2 enabled each enzyme to be loaded in controllable amount, thus maximizing the relative portion of the rate limiting P450 BM3 (up to 19.5 U/gcarrier ) in total enzyme immobilized. Using lauric acid as a representative P450 substrate that is poorly accessible to whole-cell catalysts, we demonstrate complete hydroxylation at low catalyst loading (≤0.1 mol%) and efficient electron coupling (74%), inside of the catalyst particle, to the regeneration of NADPH from glucose (27 cycles) was achieved. The immobilized P450 BM3 showed a total turnover number of ∼18,000, thus allowing active catalyst to be recycled up to 20 times. This study therefore supports the idea of practical heterogeneous catalysis by P450s systems immobilized on solid support.
Keyphrases
- highly efficient
- ionic liquid
- metal organic framework
- room temperature
- reduced graphene oxide
- visible light
- carbon dioxide
- blood glucose
- single cell
- cell therapy
- stem cells
- type diabetes
- metabolic syndrome
- reactive oxygen species
- insulin resistance
- gold nanoparticles
- cross sectional
- cancer therapy
- bone mineral density
- amino acid
- capillary electrophoresis
- binding protein
- bone marrow