Linc-ROR has a Potential ceRNA Activity for OCT4A by Sequestering miR-335-5p in the HEK293T Cell Line.
Elham Taheri BajganAkram GholipourMohammadali FaghihiSeyed Javad MowlaMahshid MalakootianPublished in: Biochemical genetics (2021)
Linc-ROR has a regulatory role in reprogramming, and the core stem cell transcription factors, OCT4, SOX2, and NANOG, regulate its expression. MicroRNAs (miRNAs) are also a critical constituent of pivotal posttranscriptional regulatory pathways. One of such interactions is a competing endogenous RNA interaction that connects small and long non-coding RNAs with coding transcripts. Here, we aimed to investigate the existence of such associations between OCT4A, Linc-ROR, hsa-miR-335-5p, and hsa-miR-544. Bioinformatic analysis was performed to evaluate the expression status of OCT4A, Linc-ROR, miR-335, and miR-544 throughout differentiation as well as in various differentiated cells. The complete lengths of OCT4A and Linc-ROR, and OCT4A 3'-UTR were cloned in the luciferase reporter vector, and the precursors of miR-335 and miR-544 were cloned in expression vectors. Following the overexpression of miR-335 and miR-544 in the 5637 cell line, the endogenous expression of OCT4A and Linc-ROR was evaluated. Afterward, the expression vectors of miRNAs and the reporter vectors of OCT4A/Linc-ROR were co-transfected in the HEK293T cell line. Via the Dual-Luciferase assay, the effect of the overexpression of miRNAs on their two possible targets (Linc-ROR and OCT4A) was investigated. The bioinformatic analysis demonstrated a relatively similar expression pattern for OCT4A and Linc-ROR, while miR-335 showed a different expression status. Both miR-335 and miR-544 inhibited the endogenous expression of OCT4A. The Dual-Luciferase assay likewise confirmed the inhibitory effect of miR-335 and miR-544 on OCT4A expression. In contrast, the miR-335 inhibitory effect was reversed in the presence of Linc-ROR, resulting in the upregulation of OCT4A. Such evidence suggests that Linc-ROR may compete with OCT4A to interact with miR-335.
Keyphrases
- long non coding rna
- poor prognosis
- cell proliferation
- long noncoding rna
- optical coherence tomography
- diabetic retinopathy
- stem cells
- transcription factor
- optic nerve
- oxidative stress
- computed tomography
- crispr cas
- climate change
- high throughput
- pi k akt
- binding protein
- mesenchymal stem cells
- data analysis
- atomic force microscopy
- mass spectrometry
- dna binding
- single cell