Starch-Derived Nanographene Oxide Paves the Way for Electrospinnable and Bioactive Starch Scaffolds for Bone Tissue Engineering.
Duo WuArchana SamantaRajiv K SrivastavaMinna HakkarainenPublished in: Biomacromolecules (2017)
A straightforward process that enabled electrospinning of bioactive starch-based nanofiber scaffolds was developed by utilizing starch derived nano graphene oxide (nGO) as a property enhancer and formic acid as a solvent and esterification reagent. The reaction mechanism and process were followed by detailed spectroscopic investigation. Furthermore, the incorporation of nGO as a "green bioactive additive" endorsed starch nanofibrous scaffolds several advantageous functionalities including improved electrospinnability and thermal stability, good cytocompatibility, osteo-bioactivity, and retained biodegradability. The biodegradable starch/nGO nanofibers underwent simultaneous degradation and mineralization process during 1 week of cell culture and mineralization test, thus, mimicking the structure and function of extracellular matrices (ECMs) and indicating promise for bone tissue engineering applications.