Role of smooth muscle cell p53 in pulmonary arterial hypertension.
Takayuki WakasugiIppei ShimizuYohko YoshidaYuka HayashiRyutaro IkegamiMasayoshi SudaGoro KatsuumiMasaaki NakaoMakoto HoyanoTakeshi KashimuraKazufumi NakamuraHiroshi ItoTakashi NojiriTomoyoshi SogaTohru MinaminoPublished in: PloS one (2019)
Pulmonary arterial hypertension (PAH) is characterized by remodeling and narrowing of the pulmonary arteries, which lead to elevation of right ventricular pressure, heart failure, and death. Proliferation of pulmonary artery smooth muscle cells (PASMCs) is thought to be central to the pathogenesis of PAH, although the underlying mechanisms are still being explored. The protein p53 is involved in cell cycle coordination, DNA repair, apoptosis, and cellular senescence, but its role in pulmonary hypertension (PH) is not fully known. We developed a mouse model of hypoxia-induced pulmonary hypertension (PH) and found significant reduction of p53 expression in the lungs. Our in vitro experiments with metabolomic analyses and the Seahorse XF extracellular flux analyzer indicated that suppression of p53 expression in PASMCs led to upregulation of glycolysis and downregulation of mitochondrial respiration, suggesting a proliferative phenotype resembling that of cancer cells. It was previously shown that systemic genetic depletion of p53 in a murine PH model led to more severe lung manifestations. Lack of information about the role of cell-specific p53 signaling promoted us to investigate it in our mouse PH model with the inducible Cre-loxP system. We generated a mouse model with SMC-specific gain or loss of p53 function by crossing Myh11-Cre/ERT2 mice with floxed Mdm4 mice or floxed Trp53 mice. After these animals were exposed to hypoxia for 4 weeks, we conducted hemodynamic and echocardiographic studies. Surprisingly, the severity of PH was similar in both groups of mice and there were no differences between the genotypes. Our findings in these mice indicate that activation or suppression of p53 signaling in SMCs has a minor role in the pathogenesis of PH and suggest that p53 signaling in other cells (endothelial cells, immune cells, or fibroblasts) may be involved in the progression of this condition.
Keyphrases
- single cell
- pulmonary hypertension
- pulmonary arterial hypertension
- pulmonary artery
- high fat diet induced
- mouse model
- cell cycle
- endothelial cells
- dna repair
- heart failure
- poor prognosis
- smooth muscle
- coronary artery
- dna damage
- oxidative stress
- cell proliferation
- signaling pathway
- early onset
- cell cycle arrest
- left ventricular
- healthcare
- induced apoptosis
- stem cells
- type diabetes
- skeletal muscle
- insulin resistance
- small molecule
- gestational age
- amino acid
- drug induced
- extracellular matrix
- protein protein