Login / Signup

Equine metabolism of the selective androgen receptor modulator YK-11 in urine and plasma following oral administration.

Caitlin HardingMarjaana ViljantoJocelyn Habershon-ButcherPolly TaylorJames Scarth
Published in: Drug testing and analysis (2022)
YK-11 is a steroidal selective androgen receptor modulator, a compound class prohibited in both equine racing and human sports because of their potentially performance enhancing properties. YK-11 is easily accessible via internet-based supplement vendors making this compound a possible candidate for doping; however, its phases I and II metabolism has not yet been reported in the horse. The purpose of this study was to investigate the in vivo metabolites of YK-11 in urine and plasma following oral administration with three daily doses of 50 mg to two Thoroughbred horses. In vitro incubations with equine liver microsomes/S9 were also performed for use as metabolite reference materials; however, this resulted in the formation of 79 metabolites with little overlap with the in vivo metabolism. In plasma, parent YK-11 and seven phase I metabolites were detected, with five of them also observed in vitro. They were present nonconjugated in plasma, with one metabolite also indicating some glucuronide conjugation. In urine, 11 phase I metabolites were observed, with four of them also observed in vitro and six of them also detected in plasma. Nine metabolites were excreted non-conjugated in urine, with two of them also indicating some sulfate conjugation. Two minor metabolites were detected solely as sulfate conjugates. The most abundant analytes in urine were a mono-O-demethylated breakdown product and di-O-demethylated YK-11. The most abundant analytes in plasma were two isomers of the breakdown product with an additional hydroxylation reaction, which also provided the longest detection time in both matrices.
Keyphrases
  • ms ms
  • endothelial cells
  • photodynamic therapy
  • drug delivery
  • pseudomonas aeruginosa
  • quantum dots
  • candida albicans
  • biofilm formation
  • pluripotent stem cells
  • electron transfer