Bipyridinium and Phenanthrolinium Dications for Metal-Free Hydrodefluorination: Distinctive Carbon-Based Reactivity.
Katherine I BurtonIris ElserAlexander E WakedTobias WagenerRyan J AndrewsFrank GloriusDouglas W StephanPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
The development of novel Lewis acids derived from bipyridinium and phenanthrolinium dications is reported. Calculations of Hydride Ion Affinity (HIA) values indicate high carbon-based Lewis acidity at the ortho and para positions. This arises in part from extensive LUMO delocalization across the aromatic backbones. Species [C10 H6 R2 N2 CH2 CH2 ]2+ (R=H [1 a]2+ , Me [1 f]2+ , tBu [1 g]2+ ), and [C12 H4 R4 N2 CH2 CH2 ]2+ (R=H [2 a]2+ , Me [2 b]2+ ) were prepared and evaluated for use in the initiation of hydrodefluorination (HDF) catalysis. Compound [2 a]2+ proved highly effective towards generating catalytically active silylium cations via Lewis acid-mediated hydride abstraction from silane. This enabled the HDF of a range of aryl- and alkyl- substituted sp3 (C-F) bonds under mild conditions. The protocol was also adapted to effect the deuterodefluorination of cis-2,4,6-(CF3 )3 C6 H9 . The dications are shown to act as hydride acceptors with the isolation of neutral species C16 H14 N2 (3 a) and C16 H10 Me4 N2 (3 b) and monocationic species [C14 H13 N2 ]+ ([4 a]+ ) and [C18 H21 N2 ]+ ([4 b]+ ). Experimental and computational data provide further support that the dications are initiators in the generation of silylium cations.