The presence of oxygenated lipids in plant defense in response to biotic stress: a metabolomics appraisal.
Chanel J PretoriusDylan R ZeissIan A DuberyPublished in: Plant signaling & behavior (2021)
Recent lipid-based findings suggest more direct roles for fatty acids and their degradation products in inducing/modulating various aspects of plant defense, e.g. as signaling molecules following stress responses that may regulate plant innate immunity. The synthesis of oxylipins is a highly dynamic process and occurs in both a developmentally regulated mode and in response to abiotic and biotic stresses. This mini-review summarizes the occurrence of free - and oxygenated fatty acid derivatives in plants as part of an orchestrated metabolic defense against pathogen attack. Oxygenated C18 derived polyunsaturated fatty acids were identified by untargeted metabolomics studies of a number of different plant-microbe pathosystems and may serve as potential biomarkers of oxidative stress. Untargeted metabolomics in combination with targeted lipidomics, can uncover previously unrecognized aspects of lipid mobilization during plant defense.