Alleviation of Diabetic Retinopathy by Glucose-Triggered Delivery of Vitamin D via Dextran-Gated Functionalized Mesoporous Silica Nanoparticles.
Sanjib SarkarNarin OsmanThilini ThrimawithanaSawlang Borsingh WannJatin KalitaPrasenjit MannaPublished in: ACS applied bio materials (2024)
Diabetic retinopathy (DR) is the most common retinal disorder, developed in 35% of patients with diabetes mellitus. Lower serum levels of 25-hydroxyvitamin D are associated with the increased risk of developing DR. High doses of the active form of vitamin D (VD), on the contrary, for a long period of time may lead to hypercalcemia and an imbalance in the regulation of bone metabolism. Herein, we studied the efficacy of dextran-gated carboxyphenylboronic acid (CPBA)-functionalized mesoporous silica nanoparticles (MSNs) for glucose-sensitive delivery of 1,25-dihydroxyvitamin D3 to modulate cellular oxidative stress and inflammation for managing DR. The physical adsorption technique was employed to load VD onto nanoparticles (263.63 μg/mg (w/w)). In the presence of glucose, the dextran molecules detach from pores, allowing VD to release since glucose has 1,2-cis diol groups which have very high affinity to CPBA. Approximately 75% of VD was released upon exposure to 25 mM glucose at a time point of 10 h, demonstrating glucose-responsive delivery. Furthermore, MSN-CPBA was able to deliver VD in a glucose-dependent manner and improve the bioavailability of VD. In high-glucose-supplemented human retinal cells, MSN-CPBA increased the bioavailability of VD and reduced cellular oxidative stress and inflammation. The results suggested that the VD-loaded nanocarrier exerted remarkable therapeutic capacity in reducing the risk of developing DR. By using MSN-CPBA as a delivery platform with dextran gating, the research proposes an effective treatment approach for improving the bioavailability and effectiveness of a hydrophobic molecule in the treatment of DR.
Keyphrases
- diabetic retinopathy
- oxidative stress
- optical coherence tomography
- blood glucose
- endothelial cells
- induced apoptosis
- editorial comment
- randomized controlled trial
- drug delivery
- high glucose
- systematic review
- dna damage
- physical activity
- metabolic syndrome
- type diabetes
- ischemia reperfusion injury
- mental health
- cell proliferation
- combination therapy
- bone mineral density
- skeletal muscle
- induced pluripotent stem cells