The balance between antiviral and antibacterial responses during M. tuberculosis infection is regulated by the ubiquitin ligase CBL.
Tina TruongKelsey E MartinMichelle R SalemiAbigail E RayBrett S PhinneyBennett H PennPublished in: bioRxiv : the preprint server for biology (2024)
As a first line of host defense, macrophages must be able to effectively sense and respond to diverse types of pathogens, and while a particular type of immune response may be beneficial in some circumstances, it can be detrimental in others. Upon infecting a macrophage, M. tuberculosis ( Mtb ) induces proinflammatory cytokines that activate antibacterial responses. Surprisingly, Mtb also triggers antiviral responses that actually hinder the ability of macrophages to control Mtb infection. The ubiquitin ligase CBL suppresses these antiviral responses and shifts macrophages toward a more antibacterial state during Mtb infection, however, the mechanisms by which CBL regulates immune signaling are unknown. We found that CBL controls responses to multiple stimuli and broadly suppresses the expression of antiviral effector genes. We then used mass-spectrometry to investigate potential CBL substrates and identified over 46,000 ubiquitylated peptides in Mtb -infected macrophages, as well as roughly 400 peptides with CBL35 dependent ubiquitylation. We then performed genetic interaction analysis of CBL and its putative substrates, and identified the Fas associated factor 2 (FAF2) adapter protein as a key signaling molecule protein downstream of CBL. Together, these analyses identify thousands of new ubiquitin-mediated signaling events during the innate immune response and reveal an important new regulatory hub in this response.
Keyphrases
- mycobacterium tuberculosis
- pulmonary tuberculosis
- immune response
- mass spectrometry
- genome wide
- dendritic cells
- poor prognosis
- signaling pathway
- amino acid
- silver nanoparticles
- emergency department
- single cell
- high resolution
- small molecule
- adipose tissue
- transcription factor
- toll like receptor
- protein protein
- risk assessment