Login / Signup

The Role of the Right Hemisphere in Processing Phonetic Variability Between Talkers.

Sahil Luthra
Published in: Neurobiology of language (Cambridge, Mass.) (2021)
Neurobiological models of speech perception posit that both left and right posterior temporal brain regions are involved in the early auditory analysis of speech sounds. However, frank deficits in speech perception are not readily observed in individuals with right hemisphere damage. Instead, damage to the right hemisphere is often associated with impairments in vocal identity processing. Herein lies an apparent paradox: The mapping between acoustics and speech sound categories can vary substantially across talkers, so why might right hemisphere damage selectively impair vocal identity processing without obvious effects on speech perception? In this review, I attempt to clarify the role of the right hemisphere in speech perception through a careful consideration of its role in processing vocal identity. I review evidence showing that right posterior superior temporal, right anterior superior temporal, and right inferior / middle frontal regions all play distinct roles in vocal identity processing. In considering the implications of these findings for neurobiological accounts of speech perception, I argue that the recruitment of right posterior superior temporal cortex during speech perception may specifically reflect the process of conditioning phonetic identity on talker information. I suggest that the relative lack of involvement of other right hemisphere regions in speech perception may be because speech perception does not necessarily place a high burden on talker processing systems, and I argue that the extant literature hints at potential subclinical impairments in the speech perception abilities of individuals with right hemisphere damage.
Keyphrases
  • hearing loss
  • oxidative stress
  • systematic review
  • healthcare
  • computed tomography
  • traumatic brain injury
  • resting state
  • magnetic resonance imaging
  • multiple sclerosis
  • functional connectivity
  • brain injury