The differential expressions of aquaporins underline the diverse strategies of cucumber and tomato against salinity and zinc stress.
Alberto Martinez-AlonsoJuan Nicolás-EspinosaMicaela CarvajalGloria BárzanaPublished in: Physiologia plantarum (2024)
Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO 4 ) were compared alone and in combination in Cucumis sativus L. and Solanum lycopersicum L. Water relations, gas exchange and the differential expression of all aquaporins were analysed. The results showed that cucumber plants under salinity maintained the internal movement of water through osmotic adjustment and the overexpression of specific PIPs aquaporins, following a "conservation strategy". As tomato has a high tolerance to salinity, the physiological parameters and the expression of most aquaporins remained unchanged. ZnSO 4 was shown to be stressful for both plant species. While cucumber upregulated 7 aquaporin isoforms, the expression of aquaporins increased in a generalized manner in tomato. Despite the differences, water relations and transpiration were adjusted in both plants, allowing the RWC in the shoot to be maintained. The aquaporin regulation in cucumber plants facing NaCl+ZnSO 4 stress was similar in the two treatments containing NaCl, evidencing the predominance of salt in stress. However, in tomato, the induced expression of specific isoforms to deal with the combined stress differed from independent stresses. The results clarify the key role of aquaporin regulation in facing abiotic stresses and their possible use as markers of tolerance to salinity and heavy metals in plants.