Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
Narcisa Gabriela PricopeJoanne Nancie HallsKerry Lynn MapesJoseph Britton BaxleyJames JyunYueh WuPublished in: Sensors (Basel, Switzerland) (2020)
Wetlands provide critical ecosystem services across a range of environmental gradients and are at heightened risk of degradation from anthropogenic pressures and continued development, especially in coastal regions. There is a growing need for high-resolution (spatially and temporally) habitat identification and precise delineation of wetlands across a variety of stakeholder groups, including wetlands loss mitigation programs. Traditional wetland delineations are costly, time-intensive and can physically degrade the systems that are being surveyed, while aerial surveys are relatively fast and relatively unobtrusive. To assess the efficacy and feasibility of using two variable-cost LiDAR sensors mounted on a commercial hexacopter unmanned aerial system (UAS) in deriving high resolution topography, we conducted nearly concomitant flights over a site located in the Atlantic Coastal plain that contains a mix of palustrine forested wetlands, upland coniferous forest, upland grass and bare ground/dirt roads. We compared point clouds and derived topographic metrics acquired using the Quanergy M8 and the Velodyne HDL-32E LiDAR sensors with airborne LiDAR and results showed that the less expensive and lighter payload sensor outperforms the more expensive one in deriving high resolution, high accuracy ground elevation measurements under a range of canopy cover densities and for metrics of point cloud density and digital terrain computed both globally and locally using variable size tessellations. The mean point cloud density was not significantly different between wetland and non-wetland areas, but the two sensors were significantly different by wetland/non-wetland type. Ultra-high-resolution LiDAR-derived topography models can fill evolving wetlands mapping needs and increase accuracy and efficiency of detection and prediction of sensitive wetland ecosystems, especially for heavily forested coastal wetland systems.