Login / Signup

Full-length gonad transcriptome analysis of Amur sturgeon Dmrt family genes: identification, characterization, and expression patterns during gonadal differentiation.

Xiujuan ZhangGuanyu LiJiabin ZhouMei LvLinmiao LiJin-Ping Chen
Published in: Fish physiology and biochemistry (2022)
The regulatory mechanisms that govern sex differentiation in sturgeon are still poorly understood. The doublesex and Mab-3-related transcription factor (Dmrt) gene family is known for its extensive roles in sex determination and differentiation across vertebrates. This study aimed to identify new members of sturgeon Dmrt family genes and core actors in the gonadal differentiation of Amur sturgeon. A full-length gonad transcriptome database was exploited to identify Dmrt gene orthologs. Analyses of phylogenetic relationships and selection pressure were performed, and tissue expression profiles and spatiotemporal expression patterns in gonads were then analyzed using real-time PCR. In total, five Dmrt family genes were identified from the full-length gonad transcriptome, including Dmrt2, DmrtA1, DmrtA2, DmrtB1a, and DmrtB1b. Phylogenetic analysis showed that these genes were clustered into clades corresponding to the doublesex/Mav-3 (DM) genes of vertebrates. Furthermore, the analysis of evolutionary selective pressure indicated that DmrtB1a and DmrtB1b were subject to positive selection, suggesting the existence of adaptive evolution in sturgeon. The extensive tissue expression profiling of each Dmrt family gene revealed typical characteristics. Remarkably, according to a spatiotemporal expression pattern analysis, in later stages, DmrtB1b expression increased in testes and was significantly higher in testes than in ovaries at 24 months after hatching (M) and 36 M. This study provides a genetic resource of full-length Dmrt family genes and increases the understanding of Dmrt functions in sex differentiation in sturgeon.
Keyphrases