Paper-Supported Photoelectrochemical Biosensor for Dual-Mode miRNA-106a Assay: Integration of Luminescence-Confined Upconversion-Actuated Fluorescent Resonance Energy Transfer and CRISPR/Cas13a-Powered Cascade DNA Circuits.
Jiali HuangKang CuiLin LiXu LiFengyi WangYangyang WangYan ZhangShenguang GeJinghua YuPublished in: Langmuir : the ACS journal of surfaces and colloids (2023)
Near-infrared (NIR)-responsive bioassays based on upconversion nanoparticle (UCNP) incorporating high-performance semiconductors have been developed by researchers, but most lack satisfactory ultrasensitivity for exceedingly trace amounts of target. Herein, for the first time, the CRISPR/Cas13a system is combined with cascade DNA circuits, fluorescent resonance energy transfer (FRET) effect, and luminescence-confined UCNPs-bonded CuInS 2 /ZnO p - n heterostructures-functionalized paper-working electrode to construct dual-signal-on paper-supported NIR-irradiated photoelectrochemical (PEC) (NIR-PEC) and upconversion luminescence (UCL) bioassay for high-sensitive quantification of miRNA-106a (miR-106a). By constructing an ideal FAM-labeled aminating molecular beacon (FAM-H2) model, a relatively good FRET ratio between the UCNP and FAM (≈85.3%) can be achieved. In the existence of miR-106a, the hairpin-structure FAM-H2 was unwound, bringing about the distance increase of UCNP and FAM and the restraint of FRET. Accordingly, both the NIR-PEC signal and the UCL intensity gradually recovered distinctly. Unlike conventional single-mode PEC sensors, with NIR excitation, the designed dual-mode sensing system could implement minimized misdiagnose assay and quantitative miR-106a determination with low detection limits, that is, 76.54 and 51.36 aM for NIR-PEC and UCL detection, respectively. This work not only broadens the horizon of application of the CRISPR/Cas13a strategy toward biosensing but also constructs a new structure of the UCNP-semiconductor in the exploration of efficient NIR-responsive tools and inspires the construction of a no-misdiagnosed and novel biosensor for dual-mode liquid biopsy.
Keyphrases
- energy transfer
- quantum dots
- crispr cas
- photodynamic therapy
- drug release
- fluorescent probe
- label free
- sensitive detection
- fluorescence imaging
- genome editing
- cell proliferation
- long non coding rna
- living cells
- single molecule
- loop mediated isothermal amplification
- long noncoding rna
- drug delivery
- circulating tumor
- high throughput
- cell free
- room temperature
- gold nanoparticles
- high resolution
- high intensity
- mass spectrometry
- pet ct