Login / Signup

Biochanin A Attenuates Cardiomyopathy in Type 2 Diabetic Rats by Increasing SIRT1 Expression and Reducing Oxidative Stress.

Manisha J OzaYogesh A Kulkarni
Published in: Chemistry & biodiversity (2022)
Diabetic cardiomyopathy is one of the major complications in type 2 diabetes associated with myocardial structure abnormality and major cause of morbidity in type 2 diabetic patients. Biochanin A is a methylated isoflavone present in flowering tops of Trifolium pratense reported for anti-inflammatory, anti-oxidant, anti-infective, anti-cancer and anti-diabetic activity. The study was designed to assess the efficacy of Biochanin A in type 2 diabetic cardiomyopathy. Type 2 diabetes was induced in rats feeding high fat diet for two weeks and administration of single low dose of streptozotocin. Biochanin A was administered for 16 weeks orally once in a day (10, 20 and 40 mg/kg of body weight). Various parameters such as blood glucose, cardiac markers, oxidative stress and hemodynamic parameters, immunohistochemical, histopathological investigation and SIRT1 expression were measured at the end of the study. Biochanin A treatment resulted into reduction in plasma concentration of cardiac markers along with reduction in hyperglycemia, hyperlipidemia and oxidative stress in cardiac tissue. Biochanin A treated animals also demonstrated improvement in hemodynamic parameters. Diabetic animals treated with different doses of Biochanin A shown increased SIRT1 expression in cardiac tissue, and also confirmed reduced cardiac hypertrophy and cardiac protection in histopathological study. Outcome of the study indicates that Biochanin A is the potential candidate to control hyperglycemia, oxidative stress and improve SIRT1 expression in cardiac tissue. Biochanin A might be considered as potential candidate to control progression of cardiomyopathy in type 2 diabetes mellitus.
Keyphrases