Dietary supplementation of jute leaf (Corchorus olitorius) modulates hepatic delta-aminolevulinic acid dehydratase (δ-ALAD) activity and oxidative status in high-fat fed/low streptozotocin-induced diabetic rats.
Jamiyu Ayodeji SaliuAdedayo Oluwaseun AdemiluyiAline Augusti BoligonGaniyu ObohMaria Rosa Chitolina SchetingerJoão Batista Teixeira RochaPublished in: Journal of food biochemistry (2019)
Impaired liver function is associated with decreased hepatic delta-aminolevulinic acid dehydratase (δ-ALAD) activity in diabetes mellitus. Hence, this study described the effect of dietary jute leaf (Corchorus olitorius) on hepatic δ-ALAD activity in high-fat fed combined with low-dose streptozotocin administered diabetic rats. Animals were fed diets containing 35% fat for 14 days prior to a single administration of low-dose (35 mg/kg body weight) streptozotocin to induce diabetes. Thereafter, the animals were randomly placed in groups and fed 100 mg/g jute leaf-supplemented diets for 30 days. The result showed that jute leaf supplementation significantly (p < 0.05) reversed the decreased hepatic δ-ALAD activity, increased hepatic catalase and SOD activity accompanying the decrease in serum AST and AST activities. This finding suggests that restoration of hepatic δ-ALAD activity, modulation of hepatic function biomarkers, and increase in antioxidant status could be possible underlying events mediating the hepatoprotective effect of jute leaf in diabetic conditions. PRACTICAL APPLICATIONS: Decrease in hepatic δ-ALAD activity has been associated with diabetes-induced hepatotoxicity arising from prolonged and uncontrolled hyperglycemia. Therefore, increased δ-ALAD activity represents improved hepatic function in diabetic situations. Antidiabetic properties of jute leaf have been demonstrated but information on its effect on hepatic δ-ALAD is lacking. Thus, this study revealed that dietary supplementation of jute leaf restored hepatic δ-ALAD activities and improved liver antioxidant status in diabetic rats which is an indication of its hepatoprotective properties.