Preparation and Desalination of Semi-Aromatic Polyamide Reverse Osmosis Membranes (ROMs).
Haiyang ZhuBingbing YuanYu-Chuan LiPublished in: Polymers (2023)
Reverse osmosis membrane (ROM) technology has a series of advantages, such as a simple process, no secondary pollution, high efficiency, energy saving, environmental protection, and good separation and purification effects. High-performance semi-aromatic polyamide reverse osmosis membranes (ROMs) were prepared by interfacial polymerization (IP) of novel cyclopentanecarbonyl chloride (CPTC) and m-phenylenediamine (MPD) monomers. The surface morphology, hydrophilicity and charge of the ROMs were characterized by field-emission scanning electron microscopy (SEM), a contact angle tester and a solid-surface zeta potential analyzer. The effects of CPTC concentration, MPD concentration, oil-phase solvent type, IP reaction time and additive concentration on the performance of semi-aromatic polyamide ROMs were studied. SEM morphology characterization showed that the surface of the prepared polyamide ROMs presented a multinodal structure. The performance test showed that when the concentration of MPD in the aqueous phase was 2.5 wt.%, the concentration of sodium dodecylbenzene sulfonate (SDBS) was 0.2%, the residence time in the aqueous phase was 2 min, the concentration of CPTC/cyclohexane in the oil phase was 0.13 wt.%, the IP reaction was 20 s, the NaCl rejection rate of the semi-aromatic polyamide ROM was 98.28% and the flux was 65.38 L/m 2 ·h, showing good desalination performance. Compared with an NF 90 commercial membrane, it has a good anti-BSA pollution ability.