Genome-Wide Gene Expression Analyses of the AtfA/AtfB-Mediated Menadione Stress Response in Aspergillus nidulans .
Beatrix KocsisMi-Kyung LeeKároly AntalJae-Hyuk YuIstván PócsiÉva LeiterTamás EmriPublished in: Cells (2023)
The bZIP transcription factors (TFs) govern regulation of development, secondary metabolism, and various stress responses in filamentous fungi. In this work, we carried out genome-wide expression studies employing Illumina RNAseq to understand the roles of the two bZIP transcription factors AtfA and AtfB in Aspergillus nidulans . Comparative analyses of transcriptomes of control, Δ atfA , Δ atfB , and Δ atfA Δ atfB mutant strains were performed. Dependence of a gene on AtfA (AtfB) was decided by its differential downregulation both between the reference and Δ atfA (Δ atfB ) strains and between the Δ atfB (Δ atfA ) and the Δ atfA Δ atfB strains in vegetatively grown cells (mycelia) and asexual spores (conidia) of menadione sodium bisulfite (MSB)-treated or untreated cultures. As AtfA is the primary bZIP TF governing stress-response in A. nidulans , the number of differentially expressed genes for Δ atfA was significantly higher than for Δ atfB in both mycelial and conidial samples, and most of the AtfB-dependent genes showed AtfA dependence, too. Moreover, the low number of genes depending on AtfB but not on AtfA can be a consequence of Δ atfA leading to downregulation of atfB expression. Conidial samples showed much higher abundance of atfA and atfB mRNAs and more AtfA- and AtfB-affected genes than mycelial samples. In the presence of MSB, the number of AtfB- (but not of AtfA-) affected genes decreased markedly, which was accompanied with decreased mRNA levels of atfB in MSB-treated mycelial (reference strain) and conidial (Δ atfA mutant) samples. In mycelia, the overlap between the AtfA-dependent genes in MSB-treated and in untreated samples was low, demonstrating that distinct genes can be under AtfA control under different conditions. Carbohydrate metabolism genes were enriched in the set of AtfA-dependent genes. Among them, AtfA-dependence of glycolytic genes in conidial samples was the most notable. Levels of transcripts of certain secondary metabolitic gene clusters, such as the Emericellamide cluster, also showed AtfA-dependent regulation. Genes encoding catalase and histidine-containing phosphotransfer proteins showed AtfA-dependence under all experimental conditions. There were 23 AtfB-dependent genes that did not depend on AtfA under any of our experimental conditions. These included a putative α-glucosidase ( agdB ), a putative α-amylase, calA, which is involved in early conidial germination, and an alternative oxidase. In summary, in A. nidulans there is a complex interaction between the two bZIP transcription factors, where AtfA plays the primary regulatory role.
Keyphrases
- genome wide
- genome wide identification
- transcription factor
- dna methylation
- gene expression
- bioinformatics analysis
- genome wide analysis
- escherichia coli
- poor prognosis
- oxidative stress
- binding protein
- cell death
- wastewater treatment
- molecular dynamics simulations
- endoplasmic reticulum stress
- antibiotic resistance genes