MSX2 represses tumor stem cell phenotypes within oral squamous cell carcinomas via SOX2 degradation.
Reziwan KeyimuMaimaitituxun TuerdiZhihe ZhaoPublished in: Experimental biology and medicine (Maywood, N.J.) (2021)
Oral squamous cell carcinoma (OSCC) is the sixth malignancy in the world with high incidence. The MSX2 (muscle segment homeobox 2)-Sry-related high-mobility box 2 (SOX2) signaling pathway plays a significant role in maintaining cancer stem cells, which are the origin of malignancy, leading to unfavorable outcomes in several carcinomas. This study aims to elucidate the mechanisms through which the MSX2-SOX2 pathway controls the cancer stem cell-like characterization in OSCC. The results showed that MSX2 was remarkably downregulated in OSCC and that the MSX2 expression level was related to unfavorable outcomes in patients with OSCC. Meanwhile, the MSX2 expression level was lower in the CD44+/CD24- population than in the other populations of OSCC cells. The OSCC2 cells exhibited decreased percentage of CD44+/CD24- cells, owing to MSX2 overexpression but increased owing to MSX2 knockdown. Moreover, a negative correlation was observed between MSX2 expression and is SOX2 transcriptional levels in different populations within the OSCC cell lines. Regarding the loss and gain of function, cancer stem cell phenotypes such as tumor globular formation, CD44+ subpopulation cells, and stem cell-associated gene expression were enhanced by MSX2 knockdown in OSCC CD44+/CD24- cells but decreased by MSX2 overexpression in other OSCC populations. However, these events were counteracted by the co-knockdown or SOX2 overexpression. Cells with MSX2 overexpression or knockdown formed smaller or bigger cancers in vivo, thereby showing a lower or a higher tumor incidence, respectively. Thus, our results confirm that MSX2 has a tumor suppression effect on the cancer stem cell phenotypes of OSCC and indicate that the MSX2-SOX2 signaling pathway could be a useful target for OSCC treatment.
Keyphrases
- induced apoptosis
- cancer stem cells
- stem cells
- transcription factor
- signaling pathway
- cell cycle arrest
- gene expression
- endoplasmic reticulum stress
- cell proliferation
- poor prognosis
- pi k akt
- cell death
- risk factors
- young adults
- type diabetes
- dna methylation
- metabolic syndrome
- skeletal muscle
- squamous cell
- heat shock protein
- bone marrow