MicroRNA-146b-5p Suppresses Pro-Inflammatory Mediator Synthesis via Targeting TRAF6, IRAK1, and RELA in Lipopolysaccharide-Stimulated Human Dental Pulp Cells.
Peifeng HanKeisuke Sunada-NaraNobuyuki KawashimaMayuko FujiiShihan WangThoai Quoc KieuZiniu YuTakashi OkijiPublished in: International journal of molecular sciences (2023)
MicroRNA-146b-5p (miR-146b-5p) is up-regulated during and to suppress the inflammation process, although mechanisms involved in the action of miR-146b-5p have not been fully elucidated. This study examined the anti-inflammation effects of miR-146b-5p in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). An increase in human miR-146b-5p (hsa-miR-146b-5p) expression following the mRNA expression of pro-inflammatory cytokines was observed in LPS-stimulated hDPCs. The expression of hsa-miR-146b-5p and pro-inflammatory cytokines was down-regulated by a nuclear factor-kappa B (NF-κB) inhibitor, and the expression of hsa-miR-146b-5p was also decreased by a JAK1/2 inhibitor. Enforced expression of hsa-miR-146b-5p abolished phosphorylation of NF-κB p65 and down-regulated the expression of pro-inflammatory cytokines and NF-κB signaling components, such as interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), and REL-associated protein involved in NF-κB (RELA). Expression of rat miR-146b-5p (rno-miR-146b-5p) and pro-inflammatory cytokine mRNA was also up-regulated in experimentally-induced rat pulpal inflammation in vivo, and rno-miR-146b-5p blocked the mRNA expression of pro-inflammatory mediators and NF-κB signaling components in LPS-stimulated ex vivo cultured rat incisor pulp tissues. These findings suggest that the synthesis of miR-146b-5p is controlled via an NF-κB/IL6/STAT3 signaling cascade, and in turn, miR-146b-5p down-regulates the expression of pro-inflammatory mediators by targeting TRAF6, IRAK1, and RELA in LPS-stimulated hDPCs.
Keyphrases
- nuclear factor
- poor prognosis
- oxidative stress
- lps induced
- signaling pathway
- inflammatory response
- toll like receptor
- endothelial cells
- binding protein
- anti inflammatory
- induced apoptosis
- transcription factor
- long non coding rna
- rheumatoid arthritis
- diabetic rats
- immune response
- endoplasmic reticulum stress
- tyrosine kinase