Login / Signup

Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compost-derived consortium.

Marco Antonio Seiki KadowakiLorenzo BrigantiDanilo E EvangelistaAlberto Echevarría-PozaTheodora TryfonaVanessa O A PellegriniDarlan G NakayamaPaul DupreeIgor Polikarpov
Published in: Biotechnology and bioengineering (2021)
The heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases. However, a recent analysis of a metatranscriptome library from a microbial lignocellulose community revealed GH11 enzymes capable of releasing solely xylobiose from xylan. Although initial biochemical studies clearly indicated their xylobiohydrolase mode of action, the structural features that drive this new activity still remained unclear. It was also not clear whether the enzymes acted on the reducing or nonreducing end of the substrate. Here, we solved the crystal structure of MetXyn11 in the apo and xylobiose-bound forms. The structure of MetXyn11 revealed the molecular features that explain the observed pattern on xylooligosaccharides released by this nonreducing end xylobiohydrolase.
Keyphrases
  • growth hormone
  • single cell
  • healthcare
  • mental health
  • microbial community
  • anaerobic digestion
  • drinking water
  • risk assessment
  • wastewater treatment
  • sewage sludge
  • amino acid
  • single molecule