Login / Signup

Classification of Functional Movement Disorders with Resting-State Functional Magnetic Resonance Imaging.

Rebecca E WaughJacob A ParkerMark HallettSilvina G Horovitz
Published in: Brain connectivity (2022)
Introduction: Functional movement disorder (FMD) is a type of functional neurological disorder characterized by abnormal movements that patients do not perceive as self-generated. Prior imaging studies show a complex pattern of altered activity, linking regions of the brain involved in emotional responses, motor control, and agency. This study aimed to better characterize these relationships by building a classifier using a support vector machine to accurately distinguish between 61 FMD patients and 59 healthy controls using features derived from resting-state functional magnetic resonance imaging. Materials and Methods: First, we selected 66 seed regions based on prior related studies, then we calculated the full correlation matrix between them before performing recursive feature elimination to winnow the feature set to the most predictive features and building the classifier. Results: We identified 29 features of interest that were highly predictive of the FMD condition, classifying patients and controls with 80% accuracy. Several key features included regions in the right sensorimotor cortex, left dorsolateral prefrontal cortex, left cerebellum, and left posterior insula. Conclusions: The features selected by the model highlight the importance of the interconnected relationship between areas associated with emotion, reward, and sensorimotor integration, potentially mediating communication between regions associated with motor function, attention, and executive function. Exploratory machine learning was able to identify this distinctive abnormal pattern, suggesting that alterations in functional linkages between these regions may be a consistent feature of the condition in many FMD patients. Clinical-Trials.gov ID: NCT00500994.
Keyphrases