MATRIX-BASED CONTROLLED RELEASE DELIVERY OF ACYCLOVIR FROM POLY-(ETHYLENE CO-VINYL ACETATE) RINGS.
Nicholas J GiannascaJennifer S SuonAmanda C EvansBarry J MarguliesPublished in: Journal of drug delivery science and technology (2019)
Up to 85% of the US adult population carries herpes simplex virus type-1 (HSV-1), with a smaller percentage (22%) infected with HSV-2. Herpesviruses can survive in lytic phase, when the viruses are actively replicating, or in latency, when the virus is functionally dormant in ganglia. Among drugs to treat these infections is acyclovir (ACV). ACV exhibits poor oral bioavailability and a short in vivo half-life; only about 10-15% of ingested drug enters the bloodstream and its half-life is about 3 hours. With those disadvantages and the possibility of poor patient compliance, viral replication may not always be suppressed. To abrogate these shortcomings we propose local distribution via sustained drug release. We present a matrix-based antiherpetic ring, composed of poly(ethylene co-vinyl acetate), that releases ACV directly to the vaginal epithelium. A 30-day in vitro drug release trial showed that approximately 135 +/- 20 μg/day of ACV was consistently released. Rings were nontoxic in cell culture and suppressed primary HSV-1 and HSV-2 replication. We expect these data form the basis for novel interventions in human health, where new prophylactics and therapeutics against genital herpes are truly needed.