Reduced plakoglobin increases the risk of sodium current defects and atrial conduction abnormalities in response to androgenic anabolic steroid abuse.
Laura C SommerfeldAndrew P HolmesTing Y YuChristopher O'SheaDeirdre M KavanaghJeremy M PikeThomas WrightFahima SyedaAreej AljehaniTania KewVictor Roth CardosoSyeeda Nashitha KabirClaire HepburnPriyanka Rajeev MenonSophie Broadway-StringerMolly O'ReillyAnika WittenLisa FortmuellerSusanne LutzAlexandra E KulleGeorgios V GkoutosDavor PavlovicWiebeke ArltGareth G LaveryRichard Paul SteedsKatja GehmlichMonika StollPaulus F KirchhofLarissa FabritzPublished in: The Journal of physiology (2024)
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako +/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in Na V 1.5 membrane clustering in Plako +/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized Na V 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Keyphrases
- atrial fibrillation
- catheter ablation
- left atrial
- heart failure
- left atrial appendage
- poor prognosis
- oral anticoagulants
- direct oral anticoagulants
- left ventricular
- copy number
- wild type
- young adults
- mitral valve
- percutaneous coronary intervention
- end stage renal disease
- chronic kidney disease
- gene expression
- adipose tissue
- climate change
- coronary artery disease
- risk assessment
- high throughput
- clinical trial
- single cell
- ejection fraction
- high resolution
- transcription factor
- early onset
- long non coding rna
- idiopathic pulmonary fibrosis
- human health
- open label
- high fat diet induced