Login / Signup

Neo-intline: integrated pipeline enables neoantigen design through the in-silico presentation of T-cell epitope.

Bingyu LiPing JingGenhui ZhengChenyu PiLu ZhangZuojing YinLijun XuJingxuan QiuHua GuTianyi QiuJianmin Fang
Published in: Signal transduction and targeted therapy (2023)
Neoantigen vaccines are one of the most effective immunotherapies for personalized tumour treatment. The current immunogen design of neoantigen vaccines is usually based on whole-genome sequencing (WGS) and bioinformatics prediction that focuses on the prediction of binding affinity between peptide and MHC molecules, ignoring other peptide-presenting related steps. This may result in a gap between high prediction accuracy and relatively low clinical effectiveness. In this study, we designed an integrated in-silico pipeline, Neo-intline, which started from the SNPs and indels of the tumour samples to simulate the presentation process of peptides in-vivo through an integrated calculation model. Validation on the benchmark dataset of TESLA and clinically validated neoantigens illustrated that neo-intline could outperform current state-of-the-art tools on both sample level and melanoma level. Furthermore, by taking the mouse melanoma model as an example, we verified the effectiveness of 20 neoantigens, including 10 MHC-I and 10 MHC-II peptides. The in-vitro and in-vivo experiments showed that both peptides predicted by Neo-intline could recruit corresponding CD4 + T cells and CD8 + T cells to induce a T-cell-mediated cellular immune response. Moreover, although the therapeutic effect of neoantigen vaccines alone is not sufficient, combinations with other specific therapies, such as broad-spectrum immune-enhanced adjuvants of granulocyte-macrophage colony-stimulating factor (GM-CSF) and polyinosinic-polycytidylic acid (poly(I:C)), or immune checkpoint inhibitors, such as PD-1/PD-L1 antibodies, can illustrate significant anticancer effects on melanoma. Neo-intline can be used as a benchmark process for the design and screening of immunogenic targets for neoantigen vaccines.
Keyphrases