Cutaneous optical coherence tomography for longitudinal volumetric assessment of intradermal volumes in a mouse model.
Kornelia SchuetzenbergerMartin PfisterAlina MessnerGerhard GarhöferChristine HohenadlUlrike PfeiffenbergerLeopold SchmettererRené M WerkmeisterPublished in: Scientific reports (2020)
Clinical evaluation of skin lesions requires precise and reproducible technologies for their qualitative and quantitative assessment. In this study, we investigate the applicability of a custom-built dermatologic OCT system for longitudinal assessment of intradermal volumes in a mouse model. The OCT, based on an akinetic swept laser working at 1310 nm was employed for visualization and quantification of intradermal deposits of three different hyaluronic acid-based hydrogel formulations - one commercial and two test substances. Hydrogels were applied in 22 BALB/c mice, and measurements were performed over a six-month time period. All hydrogels increased in volume within the first weeks and degraded steadily thereafter. The half-lifes of the test hydrogels (27.2 ± 13.6 weeks for Hydrogel 1, 31.5 ± 17.2 weeks for Hydrogel 2) were higher in comparison to the commercially available HA hydrogel (21.4 ± 12.0 weeks), although differences were not significant. The sphericity parameter was used for evaluation of the deposit geometry. While on the injection day the sphericities were similar (~0.75 ± 0.04), at later time points significant differences between the different test substances were found (T24: PRV 0.59 ± 0.09, Hydrogel 1 0.70 ± 0.11, Hydrogel 2 0.78 ± 0.07; p ≤ 0.012 for all pairs). This study shows the applicability of OCT imaging for quantitative assessment of the volumetric behavior of intradermal deposits in vivo.