Login / Signup

An Electronic Health Record Intervention to Limit Viral Testing of Cerebrospinal Fluid.

Kyle A LymanEvan MadillPrateek ThatikuntaZachary D ThrelkeldNiaz BanaeiCarl A Gold
Published in: The Neurohospitalist (2023)
Meningitis and encephalitis are neurologic emergencies that require immediate management and current guidelines recommend empiric treatment with broad-spectrum antimicrobials. Cerebrospinal fluid (CSF) testing algorithms are heterogeneous and largely institution-specific, reflecting a lack of consensus on how to effectively identify CSF pathogens while conserving resources and avoiding false positives. Moreover, many lumbar punctures (LPs) performed in the inpatient setting are done for noninfectious workups, such as evaluation for leptomeningeal metastasis. As such, tailoring CSF testing to clinical context has been a focus of multiple prior reports and several healthcare systems have focused on efforts to limit low-yield diagnostic testing when a positive result is unlikely. To curb ordering viral PCRs when pre-test probability is low, some peer institutions have implemented pleocytosis criteria for virus-specific polymerase chain reaction (PCR) tests from CSF. In this report, we retrospectively analyzed the diagnostic testing of CSF from patients who had an LP while admitted to a single, large academic medical center and found that many cases of Herpes Simplex Virus (HSV) meningoencephalitis were diagnosed by non-neurologists. The rate of positive virus-specific PCR tests was very low, and tests were frequently ordered in duplicate with a multiplexed meningitis/encephalitis PCR panel (M/E panel, BioFire, Salt Lake City, UT). We designed and implemented a systems-level intervention to promote a revised stepwise testing algorithm that minimizes unnecessary tests. This intervention led to a significant reduction in the number of low-yield virus-specific PCR tests ordered without implementing a policy of cancelling virus-specific PCRs.
Keyphrases