Login / Signup

Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects.

Christina LihlLisa M DouglasSteffi FrankeAlfredo Pérez-de-MoraArmin H MeyerMartina DaubmeierElizabeth A EdwardsIvonne NijenhuisBarbara Sherwood LollarMartin Elsner
Published in: Environmental science & technology (2019)
Tetrachloroethene (PCE) and trichloroethene (TCE) are significant groundwater contaminants. Microbial reductive dehalogenation at contaminated sites can produce nontoxic ethene but often stops at toxic cis-1,2-dichloroethene ( cis-DCE) or vinyl chloride (VC). The magnitude of carbon relative to chlorine isotope effects (as expressed by ΛC/Cl, the slope of δ13C versus δ37Cl regressions) was recently recognized to reveal different reduction mechanisms with vitamin B12 as a model reactant for reductive dehalogenase activity. Large ΛC/Cl values for cis-DCE reflected cob(I)alamin addition followed by protonation, whereas smaller ΛC/Cl values for PCE evidenced cob(I)alamin addition followed by Cl- elimination. This study addressed dehalogenation in actual microorganisms and observed identical large ΛC/Cl values for cis-DCE (ΛC/Cl = 10.0 to 17.8) that contrasted with identical smaller ΛC/Cl for TCE and PCE (ΛC/Cl = 2.3 to 3.8). For TCE, the trend of small ΛC/Cl could even be reversed when mixed cultures were precultivated on VC or DCEs and subsequently confronted with TCE (ΛC/Cl = 9.0 to 18.2). This observation provides explicit evidence that substrate adaptation must have selected for reductive dehalogenases with different mechanistic motifs. The patterns of ΛC/Cl are consistent with practically all studies published to date, while the difference in reaction mechanisms offers a potential answer to the long-standing question of why bioremediation frequently stalls at cis-DCE.
Keyphrases