Osteocytes regulate senescence of bone and bone marrow.
Peng DingChuan GaoYoushui GaoDelin LiuHao LiJun XuXiaoyi ChenYigang HuangChangqing ZhangMinghao ZhengJun-Jie GaoPublished in: eLife (2022)
The skeletal system contains a series of sophisticated cellular lineages arising from the mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) that determine the homeostasis of bone and bone marrow. Here, we reasoned that osteocyte may exert a function in regulation of these lineage cell specifications and tissue homeostasis. Using a mouse model of conditional deletion of osteocytes by the expression of diphtheria toxin subunit α in dentin matrix protein 1 (DMP1)-positive osteocytes, we demonstrated that partial ablation of DMP1-positive osteocytes caused severe sarcopenia, osteoporosis, and degenerative kyphosis, leading to shorter lifespan in these animals. Osteocytes reduction altered mesenchymal lineage commitment, resulting in impairment of osteogenesis and induction of osteoclastogensis. Single-cell RNA sequencing further revealed that hematopoietic lineage was mobilized toward myeloid lineage differentiation with expanded myeloid progenitors, neutrophils, and monocytes, while the lymphopoiesis was impaired with reduced B cells in the osteocyte ablation mice. The acquisition of a senescence-associated secretory phenotype (SASP) in both osteogenic and myeloid lineage cells was the underlying cause. Together, we showed that osteocytes play critical roles in regulation of lineage cell specifications in bone and bone marrow through mediation of senescence.
Keyphrases
- bone marrow
- single cell
- mesenchymal stem cells
- rna seq
- bone mineral density
- umbilical cord
- stem cells
- high throughput
- mouse model
- dna damage
- endothelial cells
- cell therapy
- escherichia coli
- postmenopausal women
- bone regeneration
- peripheral blood
- induced apoptosis
- poor prognosis
- metabolic syndrome
- body composition
- dendritic cells
- early onset
- cell proliferation
- bone loss
- small molecule
- adipose tissue
- long non coding rna
- depressive symptoms
- oxidative stress
- type diabetes
- amino acid
- catheter ablation