Login / Signup

An Experimental and Computational Study of the High-Velocity Impact of Low-Density Aluminum Foam.

Matej BorovinšekMatej VesenjakKazuyuki HokamotoZoran Ren
Published in: Materials (Basel, Switzerland) (2020)
The study presents the results of an experimental and computational study of the high-velocity impact of low-density aluminum foam into a rigid wall. It is shown that the aluminum foam samples deformed before hitting the rigid wall because of the high inertial forces during the acceleration. During the impact, the samples deformed only in the region contacting the rigid wall due to the high impact velocity; the inertial effects dominated the deformation process. However, the engineering stress-strain relationship retains its typical plateau shape until the densification strain. The experimental tests were successfully reproduced with parametric computer simulations using the LS-DYNA explicit finite element code. A unique computational lattice-type model was used, which can reproduce the randomness of the irregular, open-cell structure of aluminum foams. Parametric computer simulations of twenty different aluminum foam sample models with randomly generated irregular lattice structures were carried out at different acceleration levels to obtain representative statistical results. The high strain-rate sensitivity of low-density aluminum foam was also observed. A comparison of experimental and computational results during aluminum foam sample impact shows very similar deformation behavior. The computational model correctly represents the real impact conditions of low-density aluminum foam and can be recommended for use in similar high-velocity impact investigations.
Keyphrases
  • blood flow
  • stem cells
  • molecular dynamics
  • finite element
  • cross sectional
  • machine learning
  • mesenchymal stem cells
  • minimally invasive