Survival Bias, Non-Lineal Behavioral and Cortico-Limbic Neuropathological Signatures in 3xTg-AD Mice for Alzheimer's Disease from Premorbid to Advanced Stages and Compared to Normal Aging.
Aida MuntsantMaria Del Mar Castillo-RuizLydia Gimenez-LlortPublished in: International journal of molecular sciences (2023)
Pre-clinical research in aging is hampered by the scarcity of studies modeling its heterogeneity and complexity forged by pathophysiological conditions throughout the life cycle and under the sex perspective. In the case of Alzheimer's disease, the leading cause of dementia in older adults, we recently described in female wildtype and APP23 mice a survival bias and non-linear chronology of behavioral signatures from middle age to long life. Here, we present a comprehensive and multidimensional (physical, cognitive, and neuropsychiatric-like symptoms) screening and underlying neuropathological signatures in male and female 3xTg-AD mice at 2, 4, 6, 12, and 16 months of age and compared to their non-transgenic counterparts with gold-standard C57BL/6J background. Most variables studied detected age-related differences, whereas the genotype factor was specific to horizontal and vertical activities, thigmotaxis, coping with stress strategies, working memory, and frailty index. A sex effect was predominantly observed in classical emotional variables and physical status. Sixteen-month-old mice exhibited non-linear age- and genotype-dependent behavioral signatures, with higher heterogeneity in females, and worsened in naturalistically isolated males, suggesting distinct compensatory mechanisms and survival bias. The underlying temporal and spatial progression of Aβ and tau pathologies pointed to a relevant cortico-limbic substrate roadmap: premorbid intracellular Aβ immunoreactivity and pSer202/pThr205 tau phosphorylation in the amygdala and ventral hippocampus, and the entorhinal cortex and ventral hippocampus as the areas most affected by Aβ plaques. Therefore, depicting phenotypic signatures and neuropathological correlates can be critical to unveiling preventive/therapeutic research and intervention windows and studying adaptative behaviors and maladaptive responses relevant to psychopathology.
Keyphrases
- working memory
- high fat diet induced
- genome wide
- prefrontal cortex
- mental health
- spinal cord
- randomized controlled trial
- single cell
- cognitive impairment
- cognitive decline
- life cycle
- functional connectivity
- deep brain stimulation
- spinal cord injury
- wild type
- metabolic syndrome
- dna methylation
- subarachnoid hemorrhage
- reactive oxygen species