In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs.
Maxim BezDmitriy SheynWafa TawackoliPablo AvalosGalina ShapiroJoseph C GiaconiXiaoyu DaShiran Ben DavidJayne GavrityHani A AwadHyun W BaeEric J LeyThomas J KremenZulma GazitKatherine W FerraraGadi PelledDan GazitPublished in: Science translational medicine (2018)
More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.
Keyphrases
- bone regeneration
- bone loss
- magnetic resonance imaging
- stem cells
- computed tomography
- hip fracture
- tissue engineering
- mesenchymal stem cells
- bone mineral density
- induced apoptosis
- flow cytometry
- healthcare
- ultrasound guided
- crispr cas
- endothelial cells
- poor prognosis
- escherichia coli
- magnetic resonance
- cell proliferation
- positron emission tomography
- endoplasmic reticulum stress
- single molecule
- signaling pathway
- long non coding rna
- cerebral ischemia
- blood brain barrier