Predicting the Outcome of Patients with Aneurysmal Subarachnoid Hemorrhage: A Machine-Learning-Guided Scorecard.
Yi ZhangHanhai ZengHang ZhouJingbo LiTingting WangYinghan GuoLingxin CaiJunwen HuF Xiaotong ZhangGao ChenPublished in: Journal of clinical medicine (2023)
Aneurysmal subarachnoid hemorrhage (aSAH) frequently causes long-term disability, but predicting outcomes remains challenging. Routine parameters such as demographics, admission status, CT findings, and blood tests can be used to predict aSAH outcomes. The aim of this study was to compare the performance of traditional logistic regression with several machine learning algorithms using readily available indicators and to generate a practical prognostic scorecard based on machine learning. Eighteen routinely available indicators were collected as outcome predictors for individuals with aSAH. Logistic regression (LR), random forest (RF), support vector machines (SVMs), and fully connected neural networks (FCNNs) were compared. A scorecard system was established based on predictor weights. The results show that machine learning models and a scorecard achieved 0.75~0.8 area under the curve (AUC) predicting aSAH outcomes (LR 0.739, RF 0.749, SVM 0.762~0.793, scorecard 0.794). FCNNs performed best (~0.95) but lacked interpretability. The scorecard model used only five factors, generating a clinically useful tool with a total cutoff score of ≥5, indicating poor prognosis. We developed and validated machine learning models proven to predict outcomes more accurately in individuals with aSAH. The parameters found to be the most strongly predictive of outcomes were NLR, lymphocyte count, monocyte count, hypertension status, and SEBES. The scorecard system provides a simplified means of applying predictive analytics at the bedside using a few key indicators.