Excited States of Crystalline Point Defects with Multireference Density Matrix Embedding Theory.
Abhishek MitraHung Q PhamRiddhish PandharkarMatthew R HermesSoumen GhoshPublished in: The journal of physical chemistry letters (2021)
Accurate and affordable methods to characterize the electronic structure of solids are important for targeted materials design. Embedding-based methods provide an appealing balance in the trade-off between cost and accuracy─particularly when studying localized phenomena. Here, we use the density matrix embedding theory (DMET) algorithm to study the electronic excitations in solid-state defects with a restricted open-shell Hartree-Fock (ROHF) bath and multireference impurity solvers, specifically, complete active space self-consistent field (CASSCF) and n-electron valence state second-order perturbation theory (NEVPT2). We apply the method to investigate the electronic excitations in an oxygen vacancy (OV) on a MgO(100) surface and find absolute deviations within 0.05 eV between DMET using the CASSCF/NEVPT2 solver, denoted as CAS-DMET/NEVPT2-DMET, and the nonembedded CASSCF/NEVPT2 approach. Next, we establish the practicality of DMET by extending it to larger supercells for the OV defect and a neutral silicon vacancy in diamond where the use of nonembedded CASSCF/NEVPT2 is extremely expensive.