Login / Signup

Differential expression of the three Alcanivorax borkumensis SK2 genes coding for the P450 cytochromes involved in the assimilation of hydrocarbons.

Emma SevillaLuis YusteRenata MorenoFernando Rojo
Published in: Environmental microbiology reports (2017)
Alcanivorax borkumensis, a marine bacterium highly specialized in degrading linear and branched alkanes, plays a key ecological role in the removal of marine oil spills. It contains several alternative enzyme systems for terminal hydroxylation of alkanes, including three P450 cytochromes (P450-1, P450-2 and P450-3). The present work shows cytochrome P450-1 to be expressed from the promoter of the upstream gene fdx. Promoter Pfdx was more active when C8 -C18 n-alkanes or pristane were assimilated than when pyruvate was available. The product of ABO_0199 (named CypR) was identified as a transcriptional activator of Pfdx . The inactivation of cypR impaired growth on tetradecane, showing the importance of the fdx-P450-1 and/or cypR genes. P450-2 expression was low-level and constitutive under all conditions tested, while that of P450-3 from promoter P450-3 was much higher when cells assimilated pristane than when n-alkanes or pyruvate were available. However, the inactivation of P450-3 had no visible impact on pristane assimilation. Cyo terminal oxidase, a component of the electron transport chain, was found to stimulate promoter PP450-3 activity, but it did not affect promoters Pfdx or PP450-2 . A. borkumensis, therefore, appears to carefully coordinate the expression of its multiple hydrocarbon degradation genes using both specific and global regulatory systems.
Keyphrases