Network analysis: a brief overview and tutorial.
David HeveyPublished in: Health psychology and behavioral medicine (2018)
Objective : The present paper presents a brief overview on network analysis as a statistical approach for health psychology researchers. Networks comprise graphical representations of the relationships (edges) between variables (nodes). Network analysis provides the capacity to estimate complex patterns of relationships and the network structure can be analysed to reveal core features of the network. This paper provides an overview of networks, how they can be visualised and analysed, and presents a simple example of how to conduct network analysis in R using data on the Theory Planned Behaviour (TPB). Method: Participants (n = 200) completed a TPB survey on regular exercise. The survey comprised items on attitudes, normative beliefs, perceived behavioural control, and intentions. Data were analysed to examine the network structure of the variables. The EBICglasso was applied to the partial correlation matrix. Results: The network structure reveals the variation in relationships between the items. The network split into three distinct communities of items. The affective attitude item was the central node in the network. However, replication of the network in larger samples to produce more stable and robust estimates of network indices is required. Conclusions: The reported network reveals that the affective attitudinal variable was the most important node in the network and therefore interventions could prioritise targeting changing the emotional responses to exercise. Network analysis offers the potential for insight into structural relations among core psychological processes to inform the health psychology science and practice.