Identifying Resting-State Functional Connectivity Changes in the Motor Cortex Using fNIRS During Recovery from Stroke.
K M ArunK A SmithaPadmavathyamma Narayanapillai SylajaChandrasekharan KesavadasPublished in: Brain topography (2020)
Resting-state functional imaging has been used to study the functional reorganization of the brain. The application of functional near-infrared spectroscopy (fNIRS) to assess resting-state functional connectivity (rsFC) has already been demonstrated in recent years. The present study aimed to identify the difference in rsFC patterns during the recovery from the upper-limb deficit due to stroke. Twenty patients with mild stroke having an onset of four to eight weeks were recruited from the stroke clinic of our institute and an equal number of healthy volunteers were included in the study after ethical committee approval. The fNIRS signals were recorded bilaterally over the premotor area and supplementary motor area and over the primary motor cortex. Pearson Correlation is the method used to compute rsFC for the healthy group and patient group. For the healthy group, both intra-hemispheric and inter-hemispheric connections were stronger. RSFC analysis demonstrated changes from the healthy pattern for the patient group with an upper-limb deficit. The left hemisphere affected group showed disrupted ipsilesional and an increased contra-lesional connectivity. The longitudinal data analysis of rsFC showed improvement in the connections in the ipsilesional hemisphere between the primary motor area, somatosensory area, and premotor areas. In the future, the rsFC changes during the recovery could be used to predict the extent of recovery from stroke motor deficits.