Login / Signup

Allosteric activation unveils protein-mass modulation of ATP phosphoribosyltransferase product release.

Benjamin J ReadJohn B O MitchellRafael G da Silva
Published in: Communications chemistry (2024)
Heavy-isotope substitution into enzymes slows down bond vibrations and may alter transition-state barrier crossing probability if this is coupled to fast protein motions. ATP phosphoribosyltransferase from Acinetobacter baumannii is a multi-protein complex where the regulatory protein HisZ allosterically enhances catalysis by the catalytic protein HisG S . This is accompanied by a shift in rate-limiting step from chemistry to product release. Here we report that isotope-labelling of HisG S has no effect on the nonactivated reaction, which involves negative activation heat capacity, while HisZ-activated HisG S catalytic rate decreases in a strictly mass-dependent fashion across five different HisG S masses, at low temperatures. Surprisingly, the effect is not linked to the chemical step, but to fast motions governing product release in the activated enzyme. Disruption of a specific enzyme-product interaction abolishes the isotope effects. Results highlight how altered protein mass perturbs allosterically modulated thermal motions relevant to the catalytic cycle beyond the chemical step.
Keyphrases
  • protein protein
  • acinetobacter baumannii
  • amino acid
  • binding protein
  • multidrug resistant
  • pseudomonas aeruginosa
  • drug resistant
  • transcription factor
  • magnetic resonance
  • liquid chromatography