Cyclooxygenase-2 is acutely induced by CCAAT/enhancer-binding protein β to produce prostaglandin E 2 and F 2α following gonadotropin stimulation in Leydig cells.
Takashi YazawaYoshitaka ImamichiKoh-Ichi YuhkiJunsuke UwadaDaisuke MikamiMasayuki ShimadaKaoru MiyamotoTakeshi KitanoSatoru TakahashiToshio SekiguchiNobuo SuzukiMd Rafiqul Islam KhanFumitaka UshikubiAkihiro UmezawaTakanobu TaniguchiPublished in: Molecular reproduction and development (2019)
Cyclooxygenase 2 (COX-2) is an inducible rate-limiting enzyme for prostanoid production. Because COX-2 represents one of the inducible genes in mouse mesenchymal stem cells upon differentiation into Leydig cells, we investigated COX-2 expression and production of prostaglandin (PG) in Leydig cells. Although COX-2 was undetectable in mouse testis, it was transiently induced in Leydig cells by human chorionic gonadotropin (hCG) administration. Consistent with the finding that Leydig cells expressed aldo-keto reductase 1B7 (PGF synthase) and PGE synthase 2, induction of COX-2 by hCG caused a marked increase in testicular PGF 2α and PGE 2 levels. Using mouse Leydig cell tumor-derived MA-10 cells as a model, it was indicated by reporter assays and electron mobility shift assays that transcription of the COX-2 gene was activated by CCAAT/enhancer-binding protein β (C/EBPβ) with cAMP-stimulation. C/EBPβ expression was induced by cAMP-stimulation, whereas expression of C/EBP homolog protein (CHOP) was robustly downregulated. Transfection of CHOP expression plasmid inhibited cAMP-induced COX-2 promoter activity. In addition, CHOP reduced constitutive COX-2 expression in other mouse Leydig cell tumor-derived TM3 cells. These results indicate that COX-2 is induced in Leydig cells by activation of C/EBPβ via reduction of CHOP expression upon gonadotropin-stimulation to produce PGF 2α and PGE 2 .