Login / Signup

Expression of suppressor of cytokine signaling 3 (SOCS3) and interleukin-6 (-174-G/C) polymorphism in atopic conditions.

Arooma JannatMaryam KhanMaria ShabbirYasmin Badshah
Published in: PloS one (2019)
Hypersensitivity of the immune system is caused by elevated immunoglobulin E (IgE) levels in the serum, in response to a discrete allergen leading to allergic reactions. IgE-mediated inflammation is regulated by the cascade of defense related signaling molecules including interleukin-6 (IL-6) that plays pivotal role in the survival and maturation of mast cells during an allergic reaction. IL-6 mediated defense responses are tightly regulated by Suppressor of Cytokine Signaling 3 (SOCS3), an inhibitory molecules of Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling, in a negative feedback mechanism. The given study focuses on the assessment of crosstalk between SOCS3 and IL-6 to unravel the molecular significance of SOCS3 and IL-6 in the diagnosis and prognosis of allergy. The expression study of SOCS3 through real-time PCR analysis revealed, a 5.9 mean fold increase in SOCS3 expression in atopic cases in comparison to control cases. Moreover, IL-6 has, also, been found significantly enhanced in the serum level of atopic cases (26.4 pg/ml) as compared to control cases (3.686 pg/ml). Female population was found to be at a higher risk to develop atopic condition than male population as females exhibited higher expression of both SOCS3 and IL-6 than males. Furthermore, the polymorphic study of IL-6 promoter region (IL-6 174-G/C) in atopic population has reasserted the importance of SOCS3 and IL-6 in the diagnosis and prognosis of allergy. Expression of SOCS3 and IL-6 serum levels were found to be highly correlated. Therefore establishing the role of IL-6 (-174-G/C) polymorphism on the expression of SOCS3 and IL-6 in atopic cases. Notably, the study established SOCS3 and IL-6 as potential targets for the diagnosis/prognosis of allergy and for the development of reliable therapeutic strategies to control atopic conditions in the near future.
Keyphrases
  • poor prognosis
  • atopic dermatitis
  • oxidative stress
  • dna methylation
  • risk assessment
  • climate change
  • allergic rhinitis
  • real time pcr