Login / Signup

Metabolic Engineering of Clostridium cellulovorans to Improve Butanol Production by Consolidated Bioprocessing.

Zhiqiang WenRodrigo Ledesma-AmaroMinrui LuMingjie JinSheng Yang
Published in: ACS synthetic biology (2020)
Clostridium cellulovorans DSM 743B can produce butyrate when grown on lignocellulose, but it can hardly synthesize butanol. In a previous study, C. cellulovorans was successfully engineered to switch the metabolism from butyryl-CoA to butanol by overexpressing an alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824; however, its full potential in butanol production is still unexplored. In the study, a metabolic engineering approach based on a push-pull strategy was developed to further enhance cellulosic butanol production. In order to accomplish this, the carbon flux from acetyl-CoA to butyryl-CoA was pulled by overexpressing a trans-enoyl-coenzyme A reductase gene (ter), which can irreversibly catalyze crotonyl-CoA to butyryl-CoA. Then an acid reassimilation pathway uncoupled with acetone production was introduced to redirect the carbon flow from butyrate and acetate toward butyryl-CoA. Finally, xylose metabolism engineering was implemented by inactivating xylR (Clocel_0594) and araR (Clocel_1253), as well as overexpressing xylT (CA_C1345), which is expected to supply additional carbon and reducing power for CoA and butanol synthesis pathways. The final engineered strain produced 4.96 g/L of n-butanol from alkali extracted corn cobs (AECC), increasing by 235-fold compared to that of the wild type. It serves as a promising butanol producer by consolidated bioprocessing.
Keyphrases
  • fatty acid
  • wild type
  • genome wide
  • gene expression
  • transcription factor
  • risk assessment
  • plant growth