Discovery and Optimization of Small Molecules Targeting the Protein-Protein Interaction of Heat Shock Protein 90 (Hsp90) and Cell Division Cycle 37 as Orally Active Inhibitors for the Treatment of Colorectal Cancer.
Lei WangJingsheng JiangLixiao ZhangQiuyue ZhangJianrui ZhouLi LiXiao-Li XuQi-Dong YouPublished in: Journal of medicinal chemistry (2020)
Cell division cycle 37 (Cdc37) is known to work as a kinase-specific cochaperone, which selectively regulates the maturation of kinases through protein-protein interaction (PPI) with Hsp90. Directly disrupting the Hsp90-Cdc37 PPI is emerging as an alternative strategy to develop anticancer agents through a specific inhibition manner of kinase clients of Hsp90. Based on a first specific small-molecule inhibitor targeting Hsp90-Cdc37 PPI (DDO-5936), which was previously reported by our group, we conducted a preliminary investigation of the structure-activity relationships and pharmacodynamic evaluations to improve the potency and drug-like properties. Here, our efforts resulted in the currently best inhibitor 18h with improved binding affinity (Kd = 0.5 μM) and cellular inhibitory activity (IC50 = 1.73 μM). Both in vitro and in vivo assays revealed that 18h could efficiently block the Hsp90-Cdc37 interaction to specifically inhibit kinase clients of Hsp90. Furthermore, 18h showed ideal physiochemical properties with favorable stability, leading to an oral efficacy in vivo.