Login / Signup

Silica-Based Superhydrophobic and Superoleophilic Cotton Fabric with Enhanced Self-Cleaning Properties for Oil-Water Separation and Methylene Blue Degradation.

Waqas AhmadNaseer AhmadSufian RasheedMuhammad Ikram NabeelAbrar MohyuddinMuhammad Tariq RiazDilshad Hussain
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO 2 nanoparticles and octadecylamine. SiO 2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO 2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.
Keyphrases