This study advances the automation of Parkinson's disease (PD) diagnosis by analyzing speech characteristics, leveraging a comprehensive approach that integrates a voting-based machine learning model. Given the growing prevalence of PD, especially among the elderly population, continuous and efficient diagnosis is of paramount importance. Conventional monitoring methods suffer from limitations related to time, cost, and accessibility, underscoring the need for the development of automated diagnostic tools. In this paper, we present a robust model for classifying speech patterns in Korean PD patients, addressing a significant research gap. Our model employs straightforward preprocessing techniques and a voting-based machine learning approach, demonstrating superior performance, particularly when training data is limited. Furthermore, we emphasize the effectiveness of the eGeMAPSv2 feature set in PD analysis and introduce new features that substantially enhance classification accuracy. The proposed model, achieving an accuracy of 84.73 % and an area under the ROC (AUC) score of 92.18 % on a dataset comprising 100 Korean PD patients and 100 healthy controls, offers a practical solution for automated diagnosis applications, such as smartphone apps. Future research endeavors will concentrate on enhancing the model's performance and delving deeper into the relationship between high-importance features and PD.
Keyphrases
- machine learning
- deep learning
- end stage renal disease
- big data
- artificial intelligence
- chronic kidney disease
- ejection fraction
- randomized controlled trial
- peritoneal dialysis
- prognostic factors
- risk factors
- patient reported outcomes
- working memory
- high throughput
- electronic health record
- drug induced
- community dwelling
- virtual reality