Login / Signup

Synchronous Bioproduction of Betanin and Mycoprotein in the Engineered Edible Fungus Fusarium venenatum .

Sheng TongRuru HongWuxi ChenMengdan ChaiYifan ZhangYuanxia SunQinhong WangDemao Li
Published in: Journal of agricultural and food chemistry (2024)
Sustainable production of edible microbial proteins and red food colorants is an important demand for future food. Therefore, creation of a chassis strain that can efficiently synthesize both products is extremely necessary and meaningful. To realize this envision, a CRISPR/Cas9-based visual multicopy integration system was successfully developed in Fusarium venenatum . Subsequently, the de novo synthesis of the red food colorant betanin was achieved in the engineered F. venenatum using the above system. After fermentation optimization, the final yields of betanin and mycoprotein reached 1.91 and 9.53 g/L, respectively, when the constant pH naturally decreased from 6 to 4 without the addition of acid after 48 h of fermentation. These results determine a highly suitable chassis strain for the microbial biomanufacturing of betanin, and the obtained engineered strain here is expected to expand the application prospect and improve economic returns of F. venenatum in the field of future food.
Keyphrases
  • crispr cas
  • current status
  • human health
  • microbial community
  • genome editing
  • risk assessment